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Abstract 

An analytical method for the description and analysis 
in real space of X-ray Bragg reflections from extended- 
face crystals is presented. The method is applied to 
discuss the stationary-crystal diffracted-beam images in 
both the symmetric and asymmetric reflection 
positions, to analyse the co and oJ:20 scan modes and 
to derive the optimum coupling between the detec:or 
and crystal motions for an equatorial-plane diffrac- 
tometer. In practice, the optimum scan mode would 
require the use of a receiving aperture inclined with 
respect to the diffraction plane, the angle of inclination 
being dependent on the diffractometer setting angles. 
It is concluded that the ~ : 2 0  scan mode is most 
suitable for routine data collection. Experimental 
images of the diffracted beam illustrate clearly the 
validity and usefulness of the mathematical description. 

1. Introduction 

The introduction of the 'Eulerian cradle' goniostat by 
Furnas & Harker (1955) began a period of consider- 
able development in the use of counter diffractometers 
for the measurement of the intensities of X-ray 
reflections from single crystals. Since the majority of the 
diffractometer measurements have been carried out 
using small single crystals bathed entirely in the X-ray 
beam, the theory of the measurement of integrated 
intensities and the studies of the various geometrical 
considerations necessary in the diffraction experiment, 
although extensive, have been largely restricted to such 
crystals (see, for example, Alexander & Smith, 1962; 
Burbank, 1964; Arndt & Willis, 1966; Ladell & 
Spielberg, 1966; Kheiker, 1969; Werner, 1972; Ein- 
stein, 1974). 

The early investigations of X-ray intensities were 
made almost exclusively with extended-face crystals. 
Although a solution to the absorption correction 
problem was suggested by Bragg (1914), the lack of a 
2'-circle limited further development of the extended- 
face technique. With the emphasis then being upon 
powder samples or small specimens bathed in the 
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beam, the use of extended-face crystals was only 
occasionally reported, principally with regard to the 
measurement of refractive indices (e.g. Field & 
Lindsay, 1937) and to monochromators (e.g. Gay, 
Hirsch & Keller, 1952). Use of the 2' circle on modern 
three- and four-circle diffractometers permits sym- 
metric Bragg diffraction from planes inclined to the 
surface of the crystal and thus obviates the absorption 
correction problem (Malt, Prager & Barnea, 1971a,b). 

The use of extended-face crystals has been ad- 
vocated for accurate determination of experimental 
structure factors (Barnea, 1975). They have been used 
in cases where suitable small crystals are difficult to 
obtain (Harada, Pedersen & Barnea, 1970), for very 
accurate measurement, particularly of weak reflections 
(Trucano & Batterman, 1972; Hollenberg & Batter- 
man, 1974; Mair & Barnea, 1975; Bilderback & 
Colella, 1976; Freeman, Mair & Barnea, 1977; 
Whiteley, Moss & Barnea, 1978; Merisalo & Jiirvinen, 
1978; Merisalo, J~irvinen & Kurittu, 1978; Merisalo, 
Peljo & Soininen, 1978) and for absolute polarity 
determination (Liminga, Chomnilpan & Abrahams, 
1978). 

The main advantages offered by the use of extended- 
face crystals for X-ray intensity measurements are: 

(1) The absorption correction, even in the general 
asymmetric reflection position, is very simple; in fact, in 
relative intensity measurements, the value of the 
absorption coefficient need not be known (Mair, Prager 
& Barnea, 1971a,b; Mathieson, 1975). 

(2) Usually only one surface of the crystal is used 
and the diffracting region is nearly the same for all 
reflections. This minimizes systematic errors due to 
perfectional inhomogeneities. There is, however, a 
limitation on the number of observable reflections 
imposed by the dimensions of both the crystal face and 
the primary beam (McIntyre, 1981). 

(3) Because the crystal intercepts the entire incident 
beam, diffracted intensities are high, decreasing 
measuring time and facilitating the measurement of 
weak reflections. Inhomogeneity in the incident beam 
is only a problem with regard to orientation 
determination. 

(4) The simple geometry makes absolute measure- 
ment with extended-face crystals far easier than with 
small crystals bathed in the beam. 

,~c: 1981 International Union of Crystallography 
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These advantages can only be confidently realized with 
a thorough understanding of the various geometric 
factors that affect the measurement. 

This paper presents an analytical method for 
describing the geometric optics of X-ray reflections 
from extended-face crystals. We apply this method first 
to derive the diffracted-beam images for a stationary 
crystal and secondly to analyze the co, co:20 and the 
general co:gO scan modes and their respective 
receiving-aperture widths. 

Although the use of crystal-monochromatized 
radiation is recommended for accurate intensity 
measurements (Ladell & Spielberg, 1966), we restrict 
the present study to the case of an incident beam taken 
directly off the focal spot of an X-ray tube. The X-ray 
spectrum of the beam consists of the K ,  doublet on a 
continuous background of white radiation. The for- 
mulae describing the diffracted-beam images are then 
valid for both unfiltered and filtered (by fl or balanced 
filters) radiation. Since the area of the crystal surface 
irradiated is generally so large that it is the predominant 
factor determining the shape and size of the diffracted 
image, we assume, unless otherwise stated, that: (1) the 
intrinsic diffraction profile is a 6 function; (2) there is 
no mosaic spread; (3) absorption is infinite; (4) the 
angle subtended by the source at the crystal is zero; 
and (5) the characteristic X-ray lines have negligible 
width. Expressions for the scan angle and receiving- 
aperture dimensions when these assumptions are 
relaxed are presented in the discussion. For brevity and 
clarity matrix arithmetic is used as much as possible in 
the geometrical description. 

A preliminary account of this work has been 
presented by Mclntyre & Barnea (1978). 

2. Definition ofdiffractometer angles 

The particular four-circle diffractometer, for which we 
shall derive the expressions describing the optics, is 
illustrated schematically in Fig. 1. The diffraction plane 
is defined as the plane perpendicular to the instrument 
axis and passing through the instrument centre. Both 
the 20 and co axes are collinear with the instrument 
axis. The 20 axis defines the position of the detector 
lying in the diffraction plane relative to the ideal 
incident beam direction. The 1' axis lies in the 
diffraction plane and makes an angle co with the ideal 
incident beam direction. The plane perpendicular to the 
Z axis and passing through the instrument centre 
includes the 1' circle. The ~0 axis lies in the 1' circle at an 
angle 1' to the instrument axis. The extended-face 
specimen is rigidly attached to the ~0 shaft and is 
assumed to be aligned such that the face is perpen- 
dicular to the ~ axis and passes through the centre of 
the instrument. 

The conventions adopted concerning the senses of 

rotation and origins of 0, co and X and the sense of 
rotation of q~ are indicated in Fig. 1. The origin of ~0 
may in general be chosen arbitrarily; in this discussion 
we assume that, at the zero position of ~0, the scattering 
vector S of the reflection being considered, the unit 
vector normal to the crystal face n and the instrument 
axis z are coplanar, and z × n has the same sense as 
n × S .  

In addition to the diffractometer angles, define "0 to 
be the angle between the scattering vector and the 
normal to the crystal face. The direction of n is 
determined by Z and co; the direction of S relative to n 
is described by (~0 and ~0 (Fig. 1). 

The expressions derived in this paper are valid for 
instruments with other conventions if the appropriate 
transformations are made. 

3. Basic beam equations 

3.1. Definition of coordinate systems 

We define several right-handed Cartesian coordinate 
systems X i YiZ~, all of which have origin at the centre 
of the instrument and are coincident when all the setting 
angles 20, ~0, co and Z and the crystal angle (t 0 are zero. 
All rotations used to define the different systems are 
right-handed rotations about their respective axes. 

Define the laboratory system X, Y~ Z~ in the following 
way: X t to be along the ideal incident beam and 
directed away from the source; Z,  to be collinear with 
the instrument axis and directed upwards. The 20-axis 
system, X 2 Y2Z2, rigidly attached to the 20 axis, is 
obtained from X~ Y, Z~ by a 20 rotation about ZI. The 
detector face lies in the plane X 2 = t. The x-axis system, 
X5 Y5 Zs, is attached to the Z axis and is related to 

Instrument axis 
20 and t,a axes 

e a ] •  
. . . .  

incident '~ '~ ~' '~ incident -- ~ ~ .-: 
b e a m  ~ % . . '  : 

~, ...~..,,,,~. 
N \ ,¢ 0 : 

~.. .. 
"., \k 

"<2 

~ X  circle ~ Detector arm 

, ~ 2 2  _'_ _ _ 

~ ~ '  Diffraction 
" ~  planc 

o axis 

Fig. 1. Geometry of the four-circle diffractometer. All rotations 
indicated are positive and in the first quadrant, r is the unit vector 
with the same sense and direction as S, and does not necessarily 
lie in the diffraction plane. 
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X~ Yl Z, by a rotation about Z, of co to give X 4 114 Z4  

followed by a rotation about X 4 of (90 ° - 2'). Thus, X 5 
lies in the diffraction plane, collinear with the 2' axis and 
Y5 is coincident with n. The diffracting-plane system, 
X3 Y3 23, is derived from X 5 Y~ Z~ by a rotation about 
Y5 of (-~0) to give X 6 Y6Z6, followed by a rotation 
about X 6 of ( -"0) .  The axis Y3 is then coincident with S. 

The vector X i in the system X i YiZi is transformed 
to X i in the system Xj Yi Zj by using the rotation matrix 
Rji as follows: 

X j  = Rji X i. 

Because of the orthonormality of the transformations, 
the inverse transformation is Rij = R)~ ~ = Rti, where Rti 
is the transpose matrix of Rji. Furthermore, Rj~ ---- 
Rjk Rki. The matrices that we shall require are 

and 

R51 = 

[ COS20 s in20  ! l  

R 2 ~ = I - s i s 2 0  c o s 2 0  , (1) 

0 

cos co sin co 0 ] 

- s i n  X sin co sin 2' cos co cos 2' [, (2) 

cos 2' sin 09 - c o s  2' coso) sin 2'_ 

cos ~0 0 sin ~p ] 
I R~ 5 = s inaosin ~0 cos~ o --sin-oCOS ~p]. (3) 
I -cOS a o sin 09 sin¢~ 0 cost~0cos~0] 

The rotation matrices can also be expressed in terms 
of the rotation and orientation matrices defined by 
Busing & Levy (1967) or those defined by Hamilton 
(1974a) if proper account is taken of the differences in 
definition of the diffractometer angles. 

3.2. Reflection and refraction operators 

In the diffraction process the incident beam can 
undergo three changes of direction: refraction at the 
air-crystal  interface, reflection off the appropriate 
atomic planes and finally refraction at the crystal-air  
interface. The two processes may be represented by 
operators that act on the vectors representing the 
direction of the X-ray beam. 

Denote the reflection operator acting about the plane 
normal to the principal axis Yi in the frame X i Yi Z; by 
Ro. v. Being a linear transformation, it can be represen- 
ted in matrix form as 

Ro. r = - 1  . 

0 

(4) 

The X i Z i plane is parallel to the atomic planes. 
Assume that there exists a refractive interface 

between the media k and l with normal parallel to the Yi 
axis, and that the deviation of any X-ray passing 
through the interface is in accordance with Snell's law. 
The operator Fin, r, describing refraction through the 
interface, is then defined by 

Ill I 
Xi xi(nk/nt) ,/2- 

RR.r Yi = sign(Yi)[1 - (nk/nt)2(l -- y~)l 

zi _ zi(nk/nt) _ 

, ( 5 )  

where n k and n t are the refractive indices of the media k 
and 1 respectively. Equation (5) gives the unit direction 
vector representing the refracted ray in medium l in 
terms of the direction cosines (Xi,Yi,Zi) of the corres- 
ponding incident ray in medium k. 

3.3. The incident beam 

Since the extended-face crystal intercepts the entire 
incident beam, the dimensions of this beam must be 
well defined by collimators. We represent the incident 
beam by a cone of radiation with semi-angle 70 about 
the X 1 axis arising from an effective point source at 
( -d ,0 ,0)  in the laboratory frame. The values of Y0 and d 
may be calculated using the tube specifications and the 
geometry of the collimation system, or may be 
determined from photographs of the diffracted beam. 

Each ray in the incident beam is described by the 
angles 7 and r/(Fig. 2), (0 _< r /<  180 °, 0 < y < Y0) and 
contains all wavelengths. In the X, YIZI frame, the 
direction vector representing the ray (y,r/) is ! c°s l 

S0,1 = COS F] s in  y 

sin r/sin ), 

and the parametric position vector describing the path 
traced by the ray is 

To, I = Ps, 1 + rSo. l (6) 

ldealbemaCimdent 

Effective point Z~ 
source 

Y~ X~ 

Fig. 2. The incident beam. 
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where r is the parameter and Ps is the position vector 
for the effective source: 

[i! P s ,  1 = 

The first subscript of the vectors sp.~, Pp,~ and Tp,~ 
denotes different vectors, the second indicates the 
frame of reference within which that vector is 
described. Hence So. ~ and s~.~ are two different vectors 
in the same frame of reference, while s0, / and %3 are 
two different descriptions of the same vector. The 
scattering vector S~ and the crystal normal n~ have only 
the single subscript denoting the frame of reference. 

3.4. Intersection of  the incident ray with the crystal 
surface 

The position vector Pc, g for the point of intersection 
of the incident ray (y, r/) with the crystal surface is given 
by the vector T0. t that satisfies 

T 0 .  / . n i = 0. (7) 

From the definition of the X~ Y5 Z5 frame, n 5 is along 
the II5 axis. Equation (7) can be easily evaluated in the 
form T0,1. R~ t n 5 = 0 to give 

Pc. ~ = da cos r/sin y , (8) 

da sin r/sin y j 

where 

a = (sin X sin o9) (cos y sin 2' sin o9 

- cos r/sin y sin 2' cos o9 - sin r/sin y cos Z) -~. 

(9) 

3.5. The diffraction condition 

The internal incident ray in the X 3 Y3 Z3 coordinate 
system is parallel to s~.3, where 

S~. 3 = R35 RR, r R51 So. r (10) 

The prime denotes that the vector refers to a physical 
vector within the crystal. The unit vector ~'~, parallel to 
Sg, is coincident with the Y3 axis. Therefore, for 
diffraction to occur, 

--sin 0~ = t 3. s~. 3 = (s~,3) v, (1 1) 

where 0~ is the Bragg angle within the crystal and is 
related to 0 n, the Bragg angle calculated from the 
wavelength in air, by 

sin 0~ = (sin On)/n, (12) 

where n is the refractive index of the crystal. The 
subscripted parentheses in (11) denote the Y3 compo- 
nent of ' SO. 3" 

3.6. The diffracted beam 

The specimen is assumed to be highly absorbing, so 
that all significant diffraction occurs only at the crystal 
surface. The diffracted beam then leaves the crystal at 
the same point at which it entered and we need only be 
concerned with the change in direction of the rays at 
each interface and interaction. The external diffracted 
ray st. i is obtained by applying the refraction and 
reflection operators to the external incident ray includ- 
ing, where necessary, the appropriate rotation transfor- 
mations. In the X 2 Y2Z2 frame the direction vector 
representing the external diffracted ray is therefore 

sL2 = R2, R~, RR,v R~5 Ro.v R35 RR,v Rst So, r (13) 

The wavelength of this particular diffracted ray is 
determined by the diffraction condition satisfied by the 
incident ray. 

The parametric vector equation of the path traced 
out by the external diffracted ray is 

TI,2  = R21 Pc, l + rsi ,2.  (14) 
At the detector face or aperture (T~.2) x = t. Solving 
(14) for r gives the point of intersection of the diffracted 
ray with the detector: 

Pd. 2 = Rz~ Pc,~ + [ t -  (Rz~ Pc,~)xl Sl.2/(SI,2)X" (15) 

In the following sections the above description will 
be applied to several specific situations encountered in 
extended-face crystal diffractometry. In the remainder 
of this paper assume that refraction can be ignored and 
hence that RR. v can be omitted. The effect of refraction 
on the optimum orientation of the crystal for reflection 
will be treated elsewhere (McIntyre, 1981). 

For a given reflection, the crystal is correctly 
oriented when the external diffracted ray corresponding 
to the central incident ray (y = 0 °) lies along the X 2 
axis. This does not, however, fix 0 since o9 and 0 may 
then vary in the ratio 1 : 1 and still the central diffracted 
ray lies along the X2 axis. The value of 0 becomes fixed 
when a particular wavelength is chosen. To specify 
completely the orientation of the crystal and diffrac- 
tometer when a reflection is so oriented, it is sufficient 
to quote the values of 0, "0 and (0. The remaining 
angles, X and o9, are then determined by the diffraction 
condition (7). 

4 .  E x p e r i m e n t a l  

All beam photographs presented in this paper were 
obtained using the extended-face specimen of InAs 
described in Appendix I. A Picker four-circle manual 
diffractometer with a 1.5 mm incident-beam colli- 
mator was used in conjunction with an Elliott Avionics 
type no. T × 12 fine-focus molybdenum X-ray tube. 
This combination of X-ray tube and collimating system 
gives effective point-source parameters of d = 194 mm 
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and 7o = 0"38°. The collimator is larger than we would 
use for integrated intensity measurements, but was 
chosen to exhibit clearly the effects described. Ilford 
Industrial (G) X-ray film was used to photograph the 
diffracted beam. 

5. The diffracted image in the asymmetric reflection 
position 

The crystal is correctly oriented in the asymmetric 
reflection position for a given value of ~0 if 

X = 90 ° - tan-l(tan (to cos ~o) (16a) 

and 

co = 0 + sin-l(sin ao sin ~0) (16b) 

(Hamilton, 1974b). We also define 

e = sin-1(sin a o sin tp) (17a) 

and 

cob = 0n + e. (17b) 

The diffraction condition, obtained by evaluating 
(11) with the Euler angles from (16), is 

- s in  0 n = - s in  0 cos ~ + cos 0 cos r/sin y. (18) 

Note that (18) is independent of ~0 since rotation to a 
new ~0 value with the corresponding X and co settings 
from (16) leaves S~ unchanged in direction. When 0 B 
and 0 are fixed, there are two solutions for r/from (18) 
for each value of ?, corresponding to the incident ray 
(?,q) being above or below the diffraction plane. In the 
diffraction plane the solutions of (18) are 

r / = 0  ° and ) , = 0 - 0 n ,  f o r 0 > 0 n ,  (19a) 

and 

r / = 1 8 0  ° and ~ = 0  n - O ,  f o r 0 < 0  n . (19b) 

The solutions for (~,r/) for the two Ka components of 
the InAs 664 reflection are plotted in Fig. 3. The 0 
value was chosen to be the weighted average of the O n 
for the two Ka components. As expected from the form 
of (18), the r/ vs ), curves are symmetric about the 
diffraction plane. At this small beam divergence the 
sections of the incident beam that give rise to 
diffraction for the two Ka components are very nearly 
straight lines in the 7,r/ plane (parallel to the Y I Z 1  

plane) and perpendicular to the diffraction plane. Each 
wavelength in the continuum in a small interval about 
the Ka components will also give rise to an r/vs ), curve 
similar to those of the Ka components. For each point 
within the circle 7 = 70 of Fig. 3 the diffraction 
condition is satisfied by one wavelength. Thus for each 
ray in the incident beam cone defined by 7 = 70, the 
crystal will select the appropriate wavelength to give 
Bragg diffraction. 

Z 1 

K,a:~ /I 01 0 o4, o  
7 = 7o / 

Fig. 3. y vs q for the cor rec t ly  oriented 664 reflection o f  M o  K a  by  

InAs .  0a~, = 3 3 . 4 0  °, 0na~ = 3 3 " 6 3 ° , a 0  = 25"54 °. 

~0 = -60 ° 

" 0 = -30 ° 

'N _~ ] ; ~o = 0 ° " ~ . ~  _ .  ss J 

2-5 mm 
! ! 

! \ 

~k\ ~.~/] ~o = 60 ° 

[" '", ;Y2 

',l LJ o:=9oo 
Fig. 4. Predicted and exper imental  d i f f rac ted-beam images for the 

664 reflection o f  I n A s  for  a range o f  values o f  ~0. The  origin and 
direct ion o f  increasing r / a r o u n d  the per imeter  is indicated on the 
image for ~0 = 30 °. 0Ka, = 33"40 °, 0K,: = 33"63 °, a0 = 25"54 °, 
t = 218 ram. 
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We find the corresponding diffracted image at the 
detector face by evaluating (15) for each of the two Ka 
components using the (7,r/) values from (18), and for 
the envelope of the beam given by y = 7o. For each ~0 
the diffracted image consists of two essentially straight 
lines for the Ka components superimposed on an oval 
region corresponding to the continuous background. In 
general the Ka images, and indeed the image for each 
wavelength in the continuum, are not perpendicular to 
the diffraction plane, due to the inclination of the 
crystal face to the diffraction plane. Fig. 4 presents the 
predicted and experimental diffracted images for a 
range of ~0 values for the InAs 664 reflection. The 
similarity between the predicted and experimental 
images shows the extent to which our assumptions are 
valid. The apparent double imaging of each component 
(seen more clearly in Fig. 5c and d) reflects the 
limitations of our approximation of the real source by 
an effective point source. The focusing and defocusing 
nature of the reflection from the extended-face crystal 
for respectively positive and negative values of e is 
clearly evident in Fig. 4, both in the width of the total 
image and in the widths and separations of the 
characteristic line images. 

Several useful expressions can be derived from (15). 
The inclination of the image of the wavelength 
component with Bragg angle 0 B, evaluated in the 
diffraction plane and for 0 = O R, is (Appendix II) 

I < l  = (.+,,.sin .ta .sin20. (2O, 
\ - dY2 ]v= o 

For most practical beam divergences, (20) can be 
considered to be valid for the entire 0 range over which 
the component with Bragg angle 0 B diffracts. For a 
given reflection the inclination increases as t / d  
increases so that in the limit t / d  -~ ~ the Ka images are 
perpendicular to the diffraction plane. Both the 
inclination of the Ka images and the skewness of the 
diffracted-beam envelope depend on ~ as may be seen 
from the images of Fig. 4. 

The Y2 intercept of the image of the wavelength 
component with Bragg angle O n is (Appendix II) 

Y0,2 = - d  tan ( 0 -  On) sin (0 n - 0 /s in  (0 s + e) 

- t t a n ( 0 -  0n). (21) 

From (21), the separation of the K a  images parallel to 
the I:2 axis is 

Ay 2 = d[tan (02 - 0) sin (02 - 0/sin (02 + e) 

+ tan ( 0 -  01) sin (01 - O/sin (01 + e)] 

+ t[tan ( 0 2 -  0) + tan ( 0 -  01)], (22) 

where 01 and 02 are the Bragg angles for the K a  1 and 
Ka 2 components respectively. 

We obtain an almost exact expression for the total 
height of the image from evaluation of d(Pd .2 ) z /dq  with 
7 = 7o (Appendix III): 

h _~ 2(d + t) tan Y0. (23) 

The maximum and minimum positions in the Z 2 
direction correspond very closely to r/ = +90 ° 

Z 2 

s Yz ", 

-. / f  sS~" - " - . .  

~ ' " ' , , ,  t \ 

(a) (b) (c) (d) 

Fig. 5. Predicted and experimental diffracted-beam images of InAs reflections at the symmetric position (~ = 0°). 

h k l 0 ( o ) t~ 0 ( o ) t (mm) Exposure (min) 

(a) 4 4 4 24.04 34.56 141 5 
(b) 4 4 4 24.04 34.56 218 5 
(c) 6 4 6 33-48 40.09 218 10 
(d) 5 5 1 24.83 7.43 218 7 

Photographs (a) and (b) have been overexposed to emphasize the diffracted-beam envelope. 
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irrespective of the other parameters. Equation (23) is 
exact if~l o = 0 °, or q~ = _+90 °. 

From (19) and (21) the width of the image in the 
diffraction plane is 

W o = d t a n  ),olsin ( 0 - e  + 7o)/sin (0 + e + 7o) 

+ sin ( 0 -  e - 7o)/sin (0 + e - )'o)] + 2t tan 70. 

(24) 

It is apparent f rom Fig. 4 that for reflections with ~to ~= 
0 ° and (0 4 : + 9 0  ° the total image width (the width of  
the projection onto the Y2 axis) is greater than W 0 
because of the skewness of the diffracted-beam en- 
velope. The total image width is given by W 0 only when 
n i lies in the dif fract ion plane (i.e. "o  = 0° or ~p = 
+90°).  

The total image width W20 is found from the 
maximum and minimum values of (Pa,2)r with respect 
to r/for 7 = 70. These may be found numerically by trial 
and error or by Newton-Raphson iteration. Alter- 
natively, an approximate but more convenient 
analytical solution, described in Appendix IV, gives 

2 2 1/2 (25) W2o ~ [ W2o + h/(dzz/dY2)v= o] . 

As one moves away from the symmetric position, 
the difference between W2o and W o decreases until 
q~ = +90 °, where W2o -- W o and 1412o is a maximum/  
minimum. The increase of W2o near ~0 = - 9 0  ° (the 
deconcentrating position) is quite dramatic (Fig. 4). 
Note that W 0 consists of two contributions from the 
two intersections of the diffracted-beam envelope with 
the diffraction plane, W o = tYo.2(70, q = 0°)i  and 
W~ = lY0.2()~ 0, q = 180°)1. Since W 0- and Wff are in 
general unequal the envelope is not spatially centred 
in the Y2Z2 plane when (16) is satisfied. The maxi- 
mum value of lY0,2(y 0, r/)l over the full e range for 
a given reflection occurs for tp = - 9 0  °, where ~: = -~0 
and r /= 0 °, and 

Y0.2 = - t a n  7olt + d sin (0 + ~ o -  7o)/sin ( 0 -  ~l o - 7o)1. 
(26) 

6. The diffracted image at the symmetric reflection 
position 

Since the positions of symmetric reflection, where the 
ideal incident and diffracted beams make equal angles 
with the normal to the surface, are those normally used 
for routine data collection we present explicitly the 
equations describing the images obtained at these 
positions. In our geometry, the Euler angles to orient 
the crystal at the two positions of symmetric reflection 
a r e  

A : w = 0 ,  2 ' = 9 0 ° - ~ 1 0 ,  9 = 0  °; (27a) 

and 

B : ~ = 0 ,  2 ' = 9 0  ° + % ,  q~= 180 ° . (27b) 

Here we present only the results for A : the results for B 
are then obtained by reflection across the diffraction 
plane. The predicted and experimental images for the 
444, 646 and 511 reflections at the symmetric position 
are given in Fig. 5. 

The equations for the inclination, the Y2 intercept, 
the component separation and the image width in the 
diffraction plane reduce to 

(dz2/d)'2)v= o -- - ( 1  + t/d) c o t , o / 2  cos 0 B, (28) 

Yo.2 = - ( d  + t) tan ( 0 -  On), (29) 

Av2 - (d + t)ltan (02 - 8)+ tan ( 0 -  0~)l, (30) 

W o = 2(d + t) tan 70. (31) 

Note that 3'0,2 and Ay 2 are independent of r~0 and that 
W 0, in contrast to the asymmetric case, is even 
independent of the particular reflection (compare Fig. 
5b, c and d). The image height is again given by (23) 
and the total image width (25), from (28) and (31), is 

W2o _~ 2 tanyo[(d + t) 2 + 4d 2 tan2tto cos 20B ]1/2. (32) 

The increase in the image width with increasing t~o is 
similar to the defocusing observed in the Schulz 
reflection technique for the determination of preferred 
orientation (Schulz, 1949; Huijser-Gerits & Rieck, 
1974). If we choose a collimator to give an incident- 
beam cross section that is rectangular such that the two 
edges parallel to the YI axis subtend an angle 70 at the 
source and those parallel to the Z~ axis subtend an 
angle )'1 at the source, the diffracted image at the 
symmetric position is a parallelogram with two edges 
parallel to the Y2 axis and two edges inclined in the 
Y2Z2 plane with gradient given by (29). The total 
image width (the width of the projection onto the Y2 
axis) is 

W2o = 2(d + t) tan )11 + 4d tan Yo tan et o cos 0 n. (33) 

Since d tan Y0 is the width of the incident beam at the 
sample, the last term in (33) is identical to the 
expression obtained by Tenckhoff (1970) for the 
increased width of the image due to the tilt of the 
sample in the Schulz technique. 

7. The optimum scanning ratio 

In all types of scans currently used to measure the 
integrated intensity with a conventional four-circle 
diffractometer, the crystal is rotated about the o) axis 
through the reflecting position. The scanning range is 
identical in all cases and within our present 
assumptions the minimum limits of the scan are 
determined by the o) positions nearest to the peak 
maximum where neither characteristic wavelength of 
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the doublet can diffract. Since 02 > 0,, (19) gives the 
upper and lower scan limits as, respectively, 

w ,  = co~ + 70, (34a) 

co t = o91 - 70" (34b) 

The scan range is 

Am = o~ u -  % = co 2 -  co z + 270 

= 0 ~ -  0~ + 270 = AO~,~ + 27o. 
(34c) 

Obviously the total radiation diffracted by the crystal is 
the same in all cases. 

The differences between the various types of scans 
are in the relative velocities of the detector and crystal 
and in the sizes of the receiving apertures. The 
theoretical minimum dimensions of the aperture are 
determined by two criteria: (1) The detector must 
receive completely both K ,  images over the full range 
of the peak scan; (2) The background correction must 
measure the continuous radiation within the diffracted- 
beam envelope in a manner consistent with the peak 
scan. Since the scattering vectors for all reflections in 
the same central lattice-row line are parallel, the 

C ' , , ,  

T ,, . . /f , ,  
" 

I . / / / i l  . . ;  / ~ ; ~ 

(a) 

Fig. 6. A scan at the symmetric position. Here d - 80 mm. t..~ - 60 
mm. t u - 8 0 m m ,  t c. - 100mm,  7 0 = 5  ° , 0 ~ = 2 4  ° . 0 2 - - 2 6  ° a n d  
~10 40 °. Therefore, the K~t~ component  is diffracted in the range 
19 < (o _<_ 29 °, and the K~t2 component  is diffracted in the range 
21 _< co < 31 °. (a) Cross section in the diffraction plane. The 
crystal surface and the incident and diffracted rays for the Knl 
component  are shown for co = 19 and 29°:  those for the Kn2 com- 
ponent are shown for co 21 and 31 ° . The rays for both com- 
ponents at co = 25 ° are also shown. As ~,~ increases, the image of 
each component  moves away from .4 towards A' .  remains 
stationary at B, and moves away from C '  towards C. For t < t n. 
W[.,o is defined by the diffracted beams for the Kn2 component  
at (o - 21 ° and the K¢t~ component  at ~o -- 29 ° , for t > t n by the 
diffracted beams for the K~tj component  at {~) 19 ° and the Kn, 
component  at ¢o 31 o. (b) lhe diffracted images at AA'  dunng an 

scan. The diffracted-beam envelope moves along Y2 while the 
Y2Z, plane remains stationary in the X , Y , Z t  frame. The re 
ceiving aperture widths for various scan modes are indicated. 
(c) The diffracted images at CC '  during an cz):20 scan. The 
diffracted-beam envelope is stationary in the Y,Z, plane while 
the X2Y2Z,  " frame rotates around Z, .  The inclined aperture 
with width W~,,o appropriate to an ~o scan is also shown. 

diffracted-beam envelopes of all these reflections are 
exactly superimposed. In addition to the spectrum of 
the reflection being studied, the total intensity scattered 
into the diffracted-beam envelope will contain signifi- 
cant contributions from the background spectra of 
neighbouring reflections in the same central lattice-row 
line. This is discussed in greater detail by Alexander & 
Smith (1962) and Burbank (1964). The background 
correction must therefore remove systematically all 
wavelengths other than the K~t doublet, i.e. all the 
Bragg-scattered background. We assume that both the 
Bragg and incoherent backgrounds (excluding thermal 
diffuse scattering which can be calculated) vary linearly 
with co within Aco and with 0 within the 20 range 
covered by the detector during the scan. 

The images of Figs. 4 and 5 correspond to stationary- 
crystal-stationary-detector measurements. During a 
scan the characteristic line images move across the 
diffracted beam within the perimeter 7 = Y0 and parallel 
to the Y2 axis. In general the diffracted-beam envelope 
itself also moves parallel to the Y2 axis with a velocity 
dependent on the coupling between co and 0. There- 
fore, the image height, 2(d + t) tan Y0, constant for a 
particular choice of diffractometer and collimator, is 
also the minimum receiving aperture height for all scan 
modes using equatorial geometry. 

Y, 
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In 09:28 scans where the motions of the crystal and 
detector are coupled in the ratio 1:2, the envelope 
remains stationary in the X 2 Y2 Z2 frame except for the 
slight variation in shape with 8. The motion of the Kt~ 
images in this case is shown schematically in Fig. 6(c). 
For co: 28 scans, therefore, the width of the envelope in 
the X 2 -- t plane also gives the minimum width of the 
receiving aperture that satisfies the first criterion. The 
Bragg-scattered background can be subtracted by 
using stationary-background measurements at the scan 
limits to satisfy the second criterion. If the aperture is 
rectangular with sides perpendicular to the diffraction 
plane, then W2o is the minimum aperture width for each 
reflection and consists of the two generally unequal 
contributions, W~o and W~o (see Fig. 6c). The 
expression for W2o, (25), or (32) if at the symmetric 
reflection position, can be used to determine for which 
reflections all of the diffracted-beam envelope is 
received by the detector if 7o, d, t and the receiving 
aperture width W A are fixed, or to determine the 
minimum values for W A or the maximum for ~'0 to 
detect completely a particular reflection. If Y0 can be 
altered it is usually convenient to set it such that W2o 
for each reflection that is to be measured in the data 
collection is significantly smaller than W A to allow 
some tolerance in the setting angles of each reflection. 
In the case of measurements of asymmetric reflections 
over the full q~ range (see, for example, Mathieson, 
1975, 1977), Fig. 4 emphasizes that the diffractometer 
geometry must be well known to ensure that all the 
diffracted beam is detected. 

In the case of co scans, if we wish to subtract the 
Bragg scattering due to non-characteristic wavelengths 
by using stationary background counts at the scan 
limits, the correct minimum aperture is that which 
receives the complete diffracted-beam envelope during 
the scan A09. In contrast to co :28 scans, the scan range 
and the aperture width are closely interrelated. With 

E Y, 
F 

A XII ' 

Fig. 7. Geomet ry  for determining the aperture width for co scans. 
Cross section in the diffraction plane. AB = W~'(mu), CD = 
Wo (mt), BC = 2t sin (Am), E H  = IV,  o, FG = Wi,,o, case (a). 

reference to Figs. 6(b) and 7 the minimum aperture 
width is 

W,o = 2t tan (A09) + [ W~0(09 u) + W 2 0 ( 0 9 1 ) ] / c o s 2 ( A 0 9 ) .  

(35) 
The orientation of the detector aperture is given by 8 = 
81, 2 = (81 q- 82)/2. 

For both the o9 : 28 and 09 scans described above, the 
area of the receiving aperture can be decreased and still 
the complete diffracted-beam envelope is accepted, if 
we relax the assumption of a rectangular aperture 
perpendicular to the diffraction plane and instead 
employ an aperture whose edges describe a paral- 
lelogram. The horizontal edges are separated by h; the 
other two edges are inclined in the Y2Z2 plane with 
gradient (dz2/dy2)v= o. For co :28 scans, the minimum 
horizontal width is then W 0 and for measurements at 
the symmetric position is independent of the reflection 
[see (3 1)1. For co scans the minimum width is 

W,, 0 = 2t tan (A09) + [ W~-(09u) + Wo(091) ] / cos2 ( z I09 ) .  

(36) 
Although it remains to be seen whether it is feasible to 
use such an inclined aperture in practice, we shall 
assume that one is available in the following deri- 
vations of aperture dimensions for the 09 scan and for 
the optimum scan mode. 

What is the smallest inclined-aperture width for to 
scans that will satisfy the first criterion? The smallest 
aperture is defined by the length along the I"2 axis 
traced out during the scan by the Ka~ and K~t 2 images 
when 8 is set at 8,. 2. Since both the diffracted-beam 
envelope and the Ktt images rotate around Z~ at nearly 
constant (but not equal) velocities, the limits of this 
length correspond to the 09 positions at which the Ktt 
components first begin or first cease to diffract. There 
are two possibilities: 

(a) If the Ktt images move towards negative Y2 as co 
increases, the aperture width is (Fig. 6b) 

W ' 0 =  [Wo(og~ + Y0) + W~(092-Yo)l/c°s2(2yo 

- A8L2) -- 2t tan (2y 0 -- A8~.2). (37) 

(b) If the K¢t images move towards positive I12 as co 
increases, the aperture width is (Fig. 6c) 

W"  0 = 2t tan (A09) - [ Wo(09u) + W~(09t)l/cos2(A09). 
(38) 

For a given diffractometer and reflection the larger of 
these is the correct expression for the minimum width. 
If they are equal then the Ktt images remain stationary 
in the X~ Y, Z l frame. At each point during the peak 
scan, usually only a fraction of the diffracted-beam 
envelope is accepted by the detector aperture. Ob- 
viously stationary counts cannot sample the Bragg- 
scattered background within the envelope in the same 
manner as the peak scan and therefore cannot be used 
to obtain a background correction. 

However, in both cases a background correction 
consistent with the peak scan can be obtained from two 
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additional w scans, the first from tot - Ato to tot with 
O = 01. 2 - Ato, the second from to,, to to,, + Ato with 
0 = 81.2 + Ato. The aperture width in both background 
scans is W "  0. In case (a), the diffracted-beam envelope 
passes only partially across the detector aperture, but 
in an identical manner in each of the three scans so that 
the area of the envelope cross section seen in each pass 
is the same. In the peak scan the K~t images move 
across the aperture within the envelope in opposite 
direction to the motion of the envelope. In case (b), the 
diffracted-beam envelope passes completely across the 
aperture in each of the three scans and in the peak scan 
the Kt~ images move across the aperture in the same 
direction as, but slower than, the envelope. 

Whenever the background is to be determined by 
stationary measurements at the scan limits the to :20 
scan requires a smaller aperture than the to scan. Often 
the to:2t9 scan will be the only possible choice, 
particularly for asymmetric reflections where W 0 is 
comparable with the width of the detector face. We 
note that in this regard the step scan favoured in 
automatic data collections is equivalent to the 
continuous scan with stationary background 
measurements. 

Any type of scan involving another ratio for the 
coupling between the crystal and detector motions is 
only worth considering if it provides an improvement in 
the peak-to-background ratio. Werner (1972) has 
derived the coupling ratio necessary to keep the 
centroid of the two Kt~ components in the diffracted 
beam aligned with the centre-line of the detector. This 
allows one to use the minimum possible detector- 
aperture width determined only by the separation of the 
K~t components, thus keeping the background contri- 
bution to the scan as low as possible. Werner 
considered both single crystals that are small compared 
with the X-ray source and large crystals where the 
shift, as the crystal is rotated, of the centre of scattering 
relative to the centre of the instrument is important. 
Einstein (1974) and Denne (1977b) have also derived 
expressions for the optimum coupling ratio for X-ray 
measurements. Denote the optimum coupling ratio 
between the crystal and detector rotations (i.e. between 
to and 20) by g; the corresponding scan is an to :gO 
scan. 

We shall now derive the optimum scanning ratio for 
asymmetric reflection from an extended-face crystal. 
Within our assumptions the dominant cause of the 
difference in g from 1, the value for the idealized 
conditions of a centred point specimen and a mono- 
energetic source (Werner, 1972; Denne, 1977b), is the 
finite size of the crystal face. Assume that the crystal 
and detector are initially oriented to maximize the 
intensity for a reflection with a Bragg angle of 8 s and 
an arbitrary value of ~p. The values of Z and e are then 
fixed by (16). At the optimum orientation, to = toB = 
OB + & 

Now allow to to vary. The ray that has diffracted 
with a Bragg angle of 0 B and lies in the diffraction plane 
is given by 

TI, 1 = Pc. l + rsl. l (39) 

[compare with (14)] evaluated for r /=  0 ° and y = to - 
tow The detector lies a distance t from the centre of the 
instrument. From the constraint 

(T,,,)2x + (TI , , )~ = fl, (40) 

r in (39) is found to give Pd, 1, the point of intersection 
of the diffracted ray with the detector [compare with 
(15)]. Denote this value of r by r a. The detector is to be 
aligned such that the tip of Pd, ~ touches the X 2 axis at t. 
This condition determines 20, thus 

2 0 =  t an - l l (Pd .~ ) r / (Pd . , ) x ] .  (41) 

The optimum scanning ratio is 

g = d28/dto = [(Pd. l)x d(Pa. ~)r/dto 

-- ( Pal. l)rd(Pd, l )x /d to  I/t2, (42) 

where the derivatives are, from (39) ,  

dPd, 1/dto = dPc, l/dto + (drd /d to)s l .  i 

+ rads l .  Jdto. (43) 

T o  find r a and g we also need a simple expression for 
S~.r Let us  a s s u m e  for the m o m e n t  that  the to and  O 
axes  are c o u p l e d  in the ratio 1 : I, so  that t~ = 8 n + to - 
to n . T h e  inc ident  ray that  lies in the d i f fract ion p lane  
and satisfies the diffraction condition is 

[ c o s ( t o -  tosq 

s0,  _- [ sin l . 

Yi st 
s s 

Y: ~ 

ffracting plane 

$0 
Fig. 8. Projection onto the X, Y~ plane. The specimen is aligned so 

that sg may diffract; the scattering vector is then s~ - sg. If a ray 
s o at an angle fl to sg also diffracts, the corresponding diffracted 
ray is at an angle -fl to s t. X 2 is parallel to s t. Then, if the 
direction cosines of s o in the X, Y, Z, frame are (a,b,c), the 
direction cosines of s~ in the X 2 Y2 Z2 frame are (a,-b,c). 
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The corresponding diffracted ray in the X 2 Y2 Z2 frame 
is then 

1 
cos (co - -  c o B )  

sl. 2 = - s i n  (co - con) , 

0 

by the a rgument  presented in the caption to Fig. 8. In 
the labora tory  f rame the diffracted ray is 

sl. l = R t l s l .  2 =  s in(20  n +  c o -  . (44) 

0 

Relax the assumption of 1:1 coupling between co and 
0. Equations (40) and (42) then yield the general 
expression for g: 

g = ( l / t 2 )  Ir2' + d2lsin2 co/sin2 con 

- sin (2co - con)/sin con] 

+ rad[s in  co cos 20n/sin con - sin (20 n - co)/sin con 

- cos ( 2 0  n + co - con)l 

+ ( d r a / d c o ) d l s i n  co sin 20n/sin con 

- sin (20 n + co - con)l 1, (45) 

where 

ra = d [ c ° s ( 2 0 n  + co - con) - sin co cos 20n/sin con] 

+ I d Z l c ° s 2 ( 2 0 n  + c o -  con) 

- 2 sin co cos 20 n cos (20 n + co - con)/sin con 

+ 2 sin co cos (co - con)/sin con 

- sin2 co sin2 20n/sin2 co n -- 11 + /,2}1/2, (46) 

and 

d r J d c o  = - Ir  a d[ cos co cos 20B/sin cos 

+ sin (20 B + c o -  con)] 

+ d2[sin co cos co/sin 2 con 

- cos (2o9 - coB)/sin ° ) n i l  

x f r  a + d[sin co cos 20n/sin con 

- c o s ( 2 0  n + co - con)] } - l  (47) 

At co = con, ra = t and we obtain 

g = [1 - ( d / t )  sin ( 2 0  n - con)/sin con] 

= 1 1 - - ( d / t ) s i n ( O A - - e ) / s i n ( O  n + c)]. (48) 

For  the Ka doublet we can use 0 n = 01. 2 in (48). The 
corresponding aperture width in the diffraction plane, 
W e, is given by A y  2 from (22). Since AO~. 2 is small, this 
simplifies to 

W e ~_ A O i . 2 [ d s i n ( O l .  2 - t:)/sin (01. 2 + e) + t], (49) 

where AOl . :  is in radians.  

A compar ison of  the values for g calculated using 
(45) and (48) indicated that  for our experimental 
a r rangement  the difference is less than 1% at the limits 
of the scan. The difference at the scan limits results 
from the co dependence of  g in (45): equation (48) is of 
course independent of co. The exact expression for Wg 

is also co dependent and the minimum aperture width 
occurs for co = col.2; however,  the increase over the 
length of  the scan is negligible. In practice, the co 
dependence of  g and Wg may be compensated  for by a 
slight increase in W e over its value from (49). 
Obviously the use of  constant  values for g and W e will 
introduce a slight systematic error. 

In the symmetr ic  mode g = 1 - d / t  and the opt imum 
coupling between the detector and the crystal  is a lways 
less than 1. In fact, in the common case of equal 
source-to-crystal  and crystal- to-detector distances, the 
opt imum scan is an co scan (Fig. 6a). That  for d > t the 
detector should be rotated in a direction opposite to the 
crystal  motion results from the translation of the Kq 
diffracting regions across the crystal  surface as co 
increases (Fig. 6b). 

At the limits of the co :g0  scan only a fraction of the 
diffracted-beam envelope passes through the inclined 
receiving aperture.  A background  correction that  also 
removes the non-characteris t ic  Bragg scattering within 
the bandpass  can be obtained from two additional 
co :gO scans, the first from co = cot - AOI,2 to co = cot - 
AO,.  2 + Aco with 0 = cot - A01.2 + ,}Aco at the centre of 
the scan, and the second from co = co,, + A01,  2 - Aco to 
co = cou + AO, .2  with 0 = cou + AOi,2  --  ,}Aco at the centre 
of  the scan. All scans have a bandpass  of  A21. 2, the Ka  
doublet splitting, and the bandpasses  of  the back-  
ground scans are displaced by +A21. 2 relative to the 
peak bandpass .  In each scan the receiving aperture 
samples the diffracted-beam envelope in an identical 
manner.  

Adopt ion of  the co :gO scan may  be advantageous  at 
low Bragg angles. A disadvantage  of the extended-face 
technique is that  unless the incident beam is severely 
collimated, there is a large range of  angles between the 
incident rays and any part icular  scattering vector for a 
given setting of the diffractometer.  For  crystals with 
large unit cells this can lead to resolution problems. At 
low Bragg angles where A01, 2 < 2), 0 and thence W e < 
W 0, the use of  the co :gO scan with an inclined aperture 
will minimize the range of  angles in the incident beam 
eventually accepted by the detector and hence improve 
the resolution. 

At higher Bragg angles where A01, 2 > 2y 0, the co : 20 
scan with inclined aperture is recommended,  since W 0 
< W e for each reflection. Both types of scans can have 
resolution problems. Since the diffracted-beam en- 
velope for the part icular  scattering vector being 
considered remains s ta t ionary in the detector aperture 
for co : 20 scans, the resolution is limited by neighbour- 
ing reflections in the central lattice-row line. For  co :gO 
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scans the envelope passes across the detector aperture 
and the resolution is limited by the diffracted-beam 
envelopes of adjacent reflections in the equatorial plane. 
The smaller aperture area for the o9 : 20 scan compared 
to the og:g0 scan means that the incoherent contri- 
bution to the background is smaller, although the 
Bragg-scattered contribution is larger. 

For a series of measurements over a wide range in 0, 
a combination of the two methods, o9 :gO scans with 
background scans for AO~. 2 < 2)' 0, and o9:20 scans 
with stationary background counts for AO~. 2 > 270, 
both with inclined apertures, may be advantageous. The 
two scan modes are compatible provided the back- 
ground measurements have been obtained correctly. 

8. Discussion 

What are the effects of finite intrinsic diffraction 
profiles, mosaic spread, absorption, source size and 
width of the characteristic X-ray lines? All five factors 
broaden the image for a particular wavelength and the 
diffracted-beam envelope, while all except absorption 
increase the minimum scan range. Corrections to Ao9 
and the aperture widths due to the mosaic spread, the 
finite source size and the natural dispersion of the 
spectral line found for small crystals (Alexander & 
Smith, 1962; Burbank, 1964; Ladell & Spielberg, 1966) 
may be similarly derived for extended-face crystals. 
Dispersion is most difficult to allow for because of the 
indefinite width of the Cauchy-like spectral-line profile 
(Ladell, Parrish & Taylor, 1959). In practice 7~, the 
correction to Aog, is often chosen to be a fixed multiple 
of the widths at half maximum intensity of the K~j and 
K,  2 lines, or to be defined by a balanced-filter pair, so 
that the scan includes a fixed percentage of the area 
under the calculated Cauchy distribution of the doublet 
(Burbank, 1964). If we include the mosaic spread 7,., 
and the angle subtended by the source at the crystal 7~, 
the corrected scan range is 

Ao9¢ = Ao9 + 72 + 7,. + 7x- (50) 

Spectral dispersion must be allowed for in the aperture 
widths for o9 and o9 :gO scans, while for o9:20 scans 
this is achieved purely by the increased scan range. The 
area swept out parallel to the X~ Y~ plane during the 
scan by the diffracted image for a particular wave- 
length is independent of 7,., although the width of this 
image at any one point during the scan will be 
increased by the mosaic spread. Therefore W' need w0 

not include a correction for 7,. but Wg must. For o9 : 20 
scans and o9 scans using stationary background counts 
the aperture widths must include terms in 7,., since the 
diffracted-beam envelope is broadened by 7,.. 

The corrected image and aperture widths are then 

W0,. = W0 + (2)',. + 7x + Ya) t (51) 

W2o C = W2o + (27,. + 7x + 7a) t (52) 

Wo e -- W,o + (27,. + 7x + 272 + 7a)t/cos2(Aoge) (53) 

Woo,. = W~0 + (27,. + 7x + 27a + 7~)t/cos2(Aog~) (54) 

W'oc = W~o + (Tx + 272 + 7a)t/cos 2 (Aogc) (55) 

Wg`` = W~ + (7., + 7x + 272 + 7a)t 

and the corrected image height is 

(56) 

h C = h + (27 m sin 0 + 7x)t, (57) 

where 7m, 7x, )',~ and 7a are in radians. To collect all 
diffracted rays that are attenuated less than 100p%, the 
correction due to absorption is 

y, t = - log  e ( 1 - p) sin (20 - 09) cos 0//a cos (o9 - 0) 
(58) 

(McIntyre, 1981), where ~t is the absorption coeffi- 
cient, whose inverse is expressed in the same units as 
the aperture widths. Finite absorption shifts the centre 
of scattering in the positive X~ direction. Rather than 
increasing the crystal height so that the centre of 
scattering coincides with the centre of the instrument, it 
is more practical to compensate for the shift by 
decreasing the 20 setting at the start of the scans by the 
amount ya/2. 

In this paper it is assumed that it is desirable to 
detect the complete K~t doublet. Denne (1977a,b) has 
proposed a monochromation technique for accurate 
integrated-intensity measurements where small and 
reasonably perfect single crystals are used. His method 
employs restricted detector slits and the optimum 
scanning ratio appropriate to such crystals (g = 1) to 
select and maintain a given bandpass. The bandpass is 
not necessarily chosen to be the complete K~t doublet. 
This monochromation technique could also be applied 
to measurements using extended-face specimens if the 
inclined aperture w:gO scan is employed. 

In the author's opinion the improvement in precision 
due to the increase in the peak-to-background ratio 
gained by using the inclined aperture 09 :gO scan would 
be outweighed by an overall decrease in accuracy. 
While a limited bandpass is theoretically desirable, the 
practical difficulties of achieving and maintaining the 
very precise alignment required both of the crystal and 
of the aperture, particularly in measurements where the 
diffractometer angles are not optimized for all reflec- 
tions (e.g. in automatic data collections), oppose the 
routine use of the inclined aperture o9 :gO scan. It would 
be better to overcome the resolution problems by 
improving the collimation of the incident beam. Profile 
fitting may yield an alternative solution to that of 
Denne (1977b) to avoid systematic errors incurred by 
not collecting the complete profiles of the characteristic 
Bragg scattering. 
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The three-dimensional nature of diffraction from 
extended-face crystals encouraged development of the 
real-space description presented in this paper. The 
description has proved to be particularly suitable for 
investigating the geometric conditions imposed by the 
experimental hardware (collimators, apertures, etc.), 
the practicabilities of different scan modes and the 
effects of refraction (Mclntyre,  1981). For other 
aspects of the experiment or for experimental arrange- 
ments different to ours, a reciprocal-space represen- 
tation or a transformed reciprocal-space repre- 
sentation like that of Einstein (1974) may be more 
appropriate. The present discussion has been confined 
to equatorial-plane diffractometers. Similar methods 
with the appropriate definitions of instrument angles 
and frames of reference could be used to describe the 
real-space geometry of reflections from extended-face 
crystals using other instruments, for example incli- 
nation diffractometers or back-reflection Laue cameras. 

I am indebted to Dr Z. Barnea for his continual 
encouragement and guidance throughout the course of 
this study. I am grateful to Mr D. Wentworth for his 
technical assistance and to Mr M. Brown for his 
photographic advice and for producing the prints of the 
diffracted-beam images. I also thank Miss Eleanor 
Rose, Department of Physics, University of Edinburgh 
for generously preparing the typescript. I gratefully 
acknowledge the financial support of a Commonwealth 
Postgraduate Research Award. The work has been 
supported by the Australian Research Grants 
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APPENDIX I 
Preparation of the extended-face specimen of InAs 

A single crystal of InAs, oriented from its cleavage 
habit, was cut parallel to the (011) cleavage planes 
using an abrasive wire saw. The cut face was ground 
with SiC abrasive of decreasing coarseness (particle 
size 70-28 lam) on a rotating steel grinding wheel, and 
then the ground face was successively polished with 302, 
303 and 303½ AIeO 3 (particle size 22-12 lam) on a flat 
steel surface. In both the above stages of polishing, 
water was used as a lubricant. The polishing process 
was continued using 304 A1203 (particle size 8 lam) 
embedded in a sheet of paper placed on a flat glass 
surface; the lubricant was CH3OH. The process was 
found to be most effective when small concentrations of 
the etchant Br 2 (Sharma, 1966) were also added to the 
lubricant. To avoid selective etching, the concentration 
was less than 0 .5% Br 2 in CH3OH. Finally, the surface 
was successively polished with 0.3 p.m t~-Al203 and 
0.05 lam 7-AI203 on a polishing cloth. Initially, distilled 
water was used as a lubricant and then the etchant 
solution. 

The polished 24 × 16 mm face had a mirror finish 
and was parallel to the (011) plane to within 1-5 o. 

APPENDIX II 
Inclination and separation of the characteristic line 

images 

(i) Inclination 

We assume that the crystal is correctly oriented in an 
asymmetric position [see (16)]. The scattering vector S 
then lies in the diffraction plane at an angle (90 ° + R) to 
the Xt axis. Furthermore, the central diffracted ray s~, 
corresponding to the central incident ray s~ (7 = 0), lies 
along the X 2 axis. 

The direction cosines of a general diffracted ray 
(neglecting refraction) are given by 

sl. 2 = R21 R~, R~5 RD. r R35 Rs~ So. ~, (59) 

with 

cos 7 1 
So. ~ = ]cos t7 sin 7 • (60) 

/ 
[_ sin r/sin 7 

Since S lies in the diffraction plane, the Z~ component 
of this ray is unchanged during diffraction. From Fig. 
8, the projection onto the X~ Y~ plane, it is obvious that 

• 1 
sl. 2 = / - c o s  r/sin 7 • (61) 

!_ sin ~ sin 7 

Hence when X and co are given by (16) 

[ l 0 !1 R21 R~I R~5 RD, Y R35 RsI : 0 --1 . (62) 

0 0 

The Y2 and Z 2 components of (15) become 

(Pd.:)r = (Pc. : )r--  cos r/sin 7[t -- (Pc.2)xl/COS 7 (63a) 

and 

(Pd.2)z = (Pc.2)z + sin r/sin )'It -- (P~.2)xl/COS 7. (63b) 

The vectors P~.2 and Pal.2 are functions of both r/and y. 
For a particular wavelength r/ is also a function of 7 
from (18) and (Pd.2)r and (Pa.2)z become Y2 and z 2 
respectively. The inclination of the characteristic line 
image at the detector is then 

dz2/dy  2 = (dz2/dy)/(dy2/d7).  (64) 

These derivatives may be evaluated explicitly. For the 
special case of oJ = co B and 7 = 0 ° it may be seen from 



118 X-RAY D I F F R A C T I O N  FROM E X T E N D E D - F A C E  SINGLE CRYSTALS 

Fig. 3 that r /=  90 ° and dr//d7 = 0. Equation (64) then 
reduces to 

(dz2/dy2)v=o 

where Z and 
respectively. 

= --(1 + t /d)  sin cos tan %/sin 20 n (65) 

co s are given by (16a) and (17b) 

(ii) Separation 

Equation (19) gives the solutions for y in the 
diffraction plane for a crystal correctly oriented in an 
asymmetric position. Since the scattering vector also 
lies in the diffraction plane, both the incident and 
diffracted rays specified by these (y,r/) values lie in the 
diffraction plane. Substituting either solution of (19) in 
(8) and then both (19) and (8) in (63a), we get the Y2 
component of this diffracted ray at the detector for the 
wavelength with Bragg angle 0B: 

Y2.o = - d  tan (0 - 0 B) sin (0 s - e)/sin (0 s + e) 

- t tan (0--  On). (66) 

A P P E N D I X  III 
The height of  the diffracted-beam envelope 

The diffracted-beam envelope is given by y = 7o. The 
maximum and minimum in the Z 2 direction at the 
detector correspond to 

d(Pa.2)z/dr/= 0, (67) 

where (Pa.2)z is given by (63b). Expanding (67) gives a 
very lengthy expression with no obvious solution for r/. 
For small beam divergences we neglect terms of higher 
than first order in tan y (the exact expression is cubic in 
tan y) to give 

d(Pd.2)z/drl ~_ cos r/tan Yo(da 2 cos 2 Y0 + t). (68) 

The right-hand side of (68) is zero if r / =  +90 °. For 
q = +90 o, 

(Pa.2)z = +(d + t) tan 70 + dtan2 }'o cos %(1 - cos 20) 

× (sin % sin oJ -7- cos Z tan ),0) -1. (69) 

If terms higher than first order in tan 7o are also 
neglected in (69), the total height of the image at the 
detector is 

h ~_ 2(d + t) tan 70. (70) 

A P P E N D I X  IV 
An approximate expression for 1412o 

For a correctly aligned reflection for which tt0 = 0° the 
perimeter of the cross section of the diffracted-beam 
envelope is very nearly a circle; for a reflection for 
which t~0 4: 0° aligned at either of the two extreme 
positions of asymmetric reflection so that g' = 90 °, the 
perimeter is very nearly an ellipse with axes along Y2 

and Z 2 (see Fig. 4). In both cases the Ka images and 
the images due to every wavelength are perpendicular 
to the diffraction plane. Consider now the general case 
of a reflection with t~ 0 ~ 0 °, aligned at any position of 
asymmetric reflection. The Ktt images are still nearly 
straight but are inclined to the diffraction plane, 
seemingly obtained from the images at 2' = 90 ° by 
translating each point on the images parallel to the I12 
axis by an amount proportional to the Z 2 component. 
Assume then that the perimeter of the cross section is 
obtained from an ellipse with axes Wo/2 and h/2 along 
II2 and Z 2 respectively by a similar translation of each 
point. 

The equation of this ellipse is 

4y2/W~ + 4zE/h 2 = 1, (71) 

where y and z are coordinates in the Y2 Z2 plane. The 
coordinates of the corresponding translated point on 
the cross-section perimeter are 

y' = y + z /g  (72a) 

and 

z' = z. (72b) 

From inspection of Figs. 4 and 6 the constant g is the 
inclination of the lines of constant wavelength in the 
diffracted image, (dz2/dy2)v= o. By solving (72) for y 
and z and substituting in (71) we find the equation for 
the perimeter: 

4y '2 /W~ + 4z'2[ I/(g 2 wE) + 1/h2l - 8 y ' z ' / ( g W ~ )  = 1. 

(73) 

For a particular diffractometer the accuracy of (73) as 
a solution to (63) should be determined over the 
permitted ranges of the diffractometer angles. 

From evaluation of (73) for dy ' /dz ' ,  the maximum 
and minimum in y'  are 

y' = + ½[ W~ + h2/g2] 1/2 (74) 

Therefore, the total image width is 

W2o = [ W 2 + h:/(dz2/dY2)~=o lu2 (75) 

References 

ALEXANDER, L. E. & S M I T H ,  G. S. (1962). Acta Crvst. 15, 
983-1004. 

ARNDT, U. W. & WILLIS, B. T. M. (1966). Single Crystal 
Diffractometry, p. 267. Cambridge Univ. Press. 

BARNEA, Z. (1975). Anomalous Scattering, edited by S. 
RAMASESHAN & S. C. ABRAHAMS, pp. 289--291. 
Copenhagen: Munksgaard. 

BILDERBACK, D. H. & COLELLA, R. (1976). Phys. ReL'. B, 
13, 2479-2488. 

BRAGG, W. H. (1914). Philos. Mag. 27, 881-899. 
[Reproduced in Acta Crl'st. (1969), A25, 3-11.] 



G. J. M C I N T Y R E  119 

BURBANK, R. D. (1964). Acta Crvst. 17, 434-442. 
BUSING, W. R. & LEVY, H. A. (1967). Acta Crvst. 22, 

457-464. 
DENNE, W. A. (1977a). Acta Cryst. A33, 438-440. 
DENNE, W. A. (1977b). Acta Cryst. A33, 987-992. 
EINSTEIN, J. R. (1974). J. Appl. Cryst. 7, 331-344. 
FIELD, J. E. & LINDSAY, G. A. (1937). Phys. Rev. 51, 

165-169. 
FREEMAN, D. K., MAIR, S. L. & BARNEA, Z. (1977). Acta 

Crrst. A33, 355-359. 
FURNAS, T. C. & HARKER, D. (1955). Rev. Sci. Instrum. 26, 

449-453. 
GAY, P., HmSCH, P. B. & KELLAR, J. N. (1952). Acta Cryst. 

5,7-11. 
HAMILTON, W. C. (1974a). In International Tables for X-ray 

Crystallography, Vol. IV, §3.2. Birmingham: Kynoch 
Press. 

HAMILTON, W. C. (1974b). In International Tables for X-ray 
Crystallography, Vol. IV, §3.3.2. Birmingham: Kynoch 
Press. 

HARADA, J., PEDERSEN, T. & BARNEA, Z. (1970). Acta 
Cryst. 26, 336-344. 

HOLLENBERG, W. C. & BATTERMAN, B. W. (1974). Phys. 
Rev. B, 10, 2148-2158. 

HUUSER-GERITS, E. M. C. & RIECK, G. D. (1974). J. Appl. 
Cryst. 7, 286-290. 

KHEIKER, D. M. (1969). Acta Crvst. A25, 82-88. 
LADELL, J.. PARRISH, W. & TAYLOR, J. (1959). Acta Cryst. 

12, 561-567. 

LADELL, J. & SPIELBERG, N. (1966). Acta Cryst. 21, 
103-118. 

LIMINGA, R., CHOMNILPAN, S. • ABRAHAMS, S. C. (1978). 
J. Appl. Cryst. 11, 128-131. 

MClNTYRE, G. J. ( 1981). In preparation. 
MCINTYRE, G. J. & BARNEA, Z. (1978). Acta Cryst. A34, 

$336. 
MAIR, S. L. & BARNEA, Z. (1975). J. Phys. Soc. Jpn, 38, 

866-869. 
MAIR, S. L., PRAGER, P. & BARNEA, Z. (1971a). J. Appl. 

Cryst. 4, 169-171. 
MAIR, S. L., PRAGER, P. & BARNEA, Z. (1971b). Nature 

(London), 234, 35. 
MATHIESON, A. McL. (1975). Acta Cryst. A31,769-774. 
MATHmSON, A. McL. (1977). Acta Cryst. A33, 610-617. 
MEmSALO, M. & J~.RVINEN, M. (1978). Philos. Mag. B37, 

233-240. 
MERISALO, M., JARVINEN, M. & KURITTU, J. (1978). Phys. 

Scr. 17, 23-25. 
MERISALO, M., PEIAO, E. & SOININEN, J. (1978). Phys. Lett. 

A, 67, 80-82. 
SCHULZ, L. (1949). J. Appl. Phys. 20, 1030-1036. 
SHARMA, B. L. (1966). Solid State Electron. 9, 728-729. 
TENCKHOFF, E. (1970). J. Appl. Phys. 41, 3944-3948. 
TRUCANO, P. & BATTERMAN, B. W. (1972). Phys. Rev. B, 6, 

3659-3666. 
WERNER, S. A. (1972). Acta Cryst. A28, 143-151. 
WHITELEY, B., MOSS, G. & BARNEA, Z. (1978). Acta Cryst. 

A34, 130-136. 

Acta Crvst. (1981). A37,:119-125 

High-Resolution Imaging of the Ferroeleetrle Perovsklte Ba2Bi4TisO~a 

BY JOHN L. HUTCHISON 

Department of  Metallurgy and Science of  Materials, University of  Oxford, Parks Road, Oxford OX1 3 PH, 
England 

AND DAVID J. SMITH 

High Resolution Electron Microscope, University Engineering Department, Free School Lane, 
Cambridge CB2 3RQ, England 

(Received 12 June 1980: accepted 4 September 1980) 

Abstract 

The ferroelectric material Ba2Bi4Ti5018 has been exam- 
ined by high-resolution electron microscopy at 200 and 
500 kV. With the directly interpretable resolution limit 
in each case extending to better than 2.5 A, it was 
demonstrated that both the A-cation and B-cation 
positions could be resolved and, furthermore, that 
analysis of structural disorder at this level of resolution 
allowed an explanation of some observed lattice defects. 
In particular, unit shifts of a perovskite cell along a 
bismuthate sheet were identified as occurring in the 

0567-7394/81/010119-07501.00 

manner previously postulated, and a Burgers vector 
circuit analysis around a low-angle domain boundary 
permitted the formulation of a model for the atomic 
configuration at the boundary. The implications of 
these observations for the study of perovskites 
generally are briefly discussed. 

Introduction 

The layered compound Ba2Bi4TisOl8 is one of a family 
(Aurivillius, 1949) which are based on a regular 
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